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Calculated values of the three velocity components and measured values of the longi- 
tudinal component are reported for the flow of water in a 90" bend of 40 x 40mm 
cross-section; the bend had a mean radius of 92 mm and was located downstream of a 
1.8 m and upstream of a 1.2 m straight section. The experiments were carried out at a 
Reynolds number, based on the hydraulic diameter and bulk velocity, of 790 (corre- 
sponding to a Dean number of 368). Flow visualization was used to identify quali- 
tatively the characteristics of the flow and laser-Doppler anemometry to quantify 
the velocity field. The results confirm and quantify that the location of maximum 
velocity moves from the centre of the duct towards the outer wall and, in the 90" 
plane, is located around 85% of the duct width from the inner wall. Secondary 
velocities up to 65% of the bulk longitudinal velocity were calculated and small 
regions of recirculation, close to the outer corners of the duct and in the upstream 
region, were also observed. 

The calculated results were obtained by solving the Navier-Stokes equations in 
cylindrical co-ordinates. They are shown to exhibit the same trends as the experiments 
and to be in reasonable quantitative agreement even though the number of node points 
used to discretize the flow for the finite-difference solution of the differential equations 
was limited by available computer time and storage. The region of recirculation 
observed experimentally is confirmed by the calculations. The magnitude of thevarious 
terms in the equations is examined to determine the extent to which the details of the 
flow can be represented by reduced forms of the Navier-Stokes equations. The implica- 
tions of the use of so-called 'partially parabolic' equations and of potential- and 
rotational-flow analysis of an ideal fluid are quantified. 

1. Introductory remarks 
Considerable attention has been devoted to the study of the flow in rectangular 

ducts and stems from the frequent use in engineering practice of non-circular 
duct flows of various forms. The turbulent flow in a rectangular duct exhibits the 
same stress-driven secondary flows as are found in other non-circular ducts and 
provides a convenient simple geometric shape for detailed examination. In  recent 
years, for example, experimental investigations have been reported by Brundrett & 
Baines (1964), Gessner & Jones (1965), Launder & Ying (1972) andMelling & Whitelaw 
(1976) and computational investigations by Launder & Ying (1973) and Tatchell 
(1 975) ; the latter have made use of the experimental information to guide the develop- 
ment of their solution procedures and particularly of the associated turbulence models. 
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In the case of bend flows, which are a natural extension of straight duct flows, a 
similar linking of experimental and computational investigations is desirable but has 
been forthcoming in only a limited way. Relevant computational investigations have, 
for example, been reported by Pratap & Spalding (1975) and Patankar, Pratap & 
Spalding (1975) for turbulent flows and by Austin & Seader (1973), Cheng, Lin & 
Ou ( 1976) and Joseph, Smith & Allen (1975) for laminar flows, but related experiments 
have been confined largely to wall measurements and have limited the extent to 
which the solution procedures can be appraised. 

The present investigation has been motivated by a need to provide a better under- 
standing of the flow in alternator-cooling passages and represents an early step in a 
long-term research programme. It is concerned with the low Reynolds number flow 
in a bend in a long rectangular duct. The dimensions of the duct and the radius of the 
bend are scaled versions of those found in alternators and a low Reynolds number has 
been chosen partly to allow the features of this geometric arrangement to be investi- 
gated without the complication of turbulence and partly to facilitate the development 
and validation of the numerical method. A previous preliminary examination of 
turbulent flow in the same bend (Humphrey & Whitelaw 1976) had shown that the 
turbulence was essentially frozen through the bend and that the pressure-driven 
secondary flows were much larger than the stress-driven secondary flows. Thus 
laminar-type equations, with appropriate eddy-viscosity formulations, may prove to  
be useful in turbulent bend flows and, to some extent, potential-flow and rotational- 
flow analysis of a perfect fluid may also be of value. 

The experimental part of the present investigation made use of flow visualization, 
by dye traces, and laser-Doppler anemometry. The dye traces provided a visual and 
qualitative impression of the flow patterns and guided the choice of locations at  which 
detailed velocity measurements were obtained. The anemometer allowed measure- 
ments of the local values of the longitudinal velocity components with precision 
better than that which could be expected from the solution method: these results 
quantify the velocity characteristics of the flow a t  six planes including those at  the 
inlet and outlet. 

The calculation procedure is based on the numerical solution of finite-difference 
representations of the Navier-Stokes equations in cylindrical co-ordinates. It was 
developed from that previously reported by Gosman & Pun (1973) and appropriate 
to the solution of two-dimensional elliptic equations; only the essential features are 
reported here and the reader is referred to Humphrey (1977) for detailed information. 
In  general, it is shown that the calculated results are in good agreement with the 
measurements even though the number of grid nodes is restricted by available com- 
puter time and storage. All trends are correctly represented and the quantitative 
agreement is good. The detailed results allow the magnitude of the various convective, 
diffusion and source terms to be examined throughout the flow to determine their 
influence and so allow an assessment of the validity of solutions of reduced equations, 
which can be achieved with equal numerical precision and greater economy. 

The flow configuration and experimental features are described in the next section, 
which is followed by presentation and discussion of the measured results. The essential 
features of the solution procedure are described in 0 4 and the results presented and 
discussed, in relation to the measurements, in the final section. 
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FIUURE 1. Flow configuration and co-ordinate system. 

2. Flow configuration, instrumentation and procedures 
The flow configuration is a 90' bend of mean radius 92mm attached to the end of 

the 1.8 m rectangular channel previously described by Melling & Whitelaw (1976). 
It was manufactured from 20 mm thick Perspex with a cross-section of 

40 & 0.1 x 40 & 0.1 mm; 

the curved surfaces were machined from solid Perspex and have radii of 72 k 0.1 mm 
and '1 12 k 0.1 mm. The bend was located in the vertical plane with a 1.2m length of 
straight duct of the same cross-section attached to  its downstream end. The inlet 
contraction to the 1.8m duct and the associated constant-head tank and pipework 
were otherwise identical to those of Melling & Whitelaw. 

Flow-visualization tests were carried out with a neutrally buoyant dye injected 
a t  various positions in' the duct through a 1 mm external diameter probe which was 
inserted through specially arranged holes and through several pressure tappings 
located along the side and outer-radius walls of the bend. The streamline nature of the 
flow a t  a Reynolds number, based on the bulk velocity I{ (1.98 x 10-2 m/s) and hydraulic 
diameter d (4.0 x 10-2m), of 790 was demonstrated by these traces and confirmed by 
the negligible fluctuations measured with the laser-Doppler anemometer. The Dean 
number of the flow was De E Re(&d/Rc)4 = 368, where Rc is the mean radius of 
curvature. 

The anemometer was similar to that used by Melling & Whitelaw and discussed by 
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Durst, Melling & Whitelaw (1976) although the mechanical design of the bend pre- 
cluded measurements of the z component of velocity (see figure 1). It comprised a 
5 mW helium-neon laser, an optical unit of the type described by Durst & Whitelaw 
(1971), a light collection arrangement, an EM1 9568B photomultiplier and a frequency- 
tracking demodulator (DISA 55L20). 

The mean velocity was read out on a Solartron digital voltmeter and the r.m.8. 
fluctuations, which proved to be negligible, observed on a DISA true r.m.5. meter. 
The angle between the transmitted light beams was 14.5" and, together with the 
forward-scatter on-line collection system, resulted in a control volume calculated to 
be 1.47 mm in length and 187,um in diameter: the effective dimensions were reduced 
by the discrimination level of the frequency-tracking demodulator. Particles were 
not added to the water, which contained sufficient natural contaminant to provide an 
almost continuous Doppler signal on the monitoring oscilloscope. The combined effect 
of transit-time, gradient and noise broadening was evaluated and had negligible 
influence on the measured mean velocity, which had an estimated precision of 
around f 0.5 % of the bulk velocity. 

3. Measured results 
Half-profiles of the longitudinal velocity component normalized by the bulk 

velocity are presented in figure 2 for the six measuring stations indicated on figure 1 
and were obtained as follows. At all radial positions shown, and additional ones at 
60 and go", measurements of the longitudinal velocity components were taken over 
the whole depth of the duct to check that the flow was symmetrical. Since this indeed 
was the case, to within experimental precision, the data on either side of the symmetry 
line were averaged to produce the profiles shown. Although figure 2 presents only 
five radial positions per measuring station seven or more profiles were taken at  each 
station with, for example, 11 and 13 profiles for the 60" station. 

The profiles measured at X ,  = - 5  (hydraulic diameters) correspond to L fully 
developed square-duct flow. Between X, = - 5  and 8 = 0, an acceleration can be 
detected in the flow at a value of ( r  - ro)/(ri - ro) of 0.7 and is due to the favourable 
longitudinal pressure gradient at  the inner-radius wall. Conversely, because of an 
adverse pressure gradient at  the outer-radius wall a small deceleration occurs at 
values of ( r  - r,)/(ri - r,) of around 0.1 between X, = - 2.5 and 8 = 0. 

In  the bend itself, the profiles demonstrate the general movement of the fluid away 
from the inner-radius wall and towards the outer-radius wall. This progressive 
movement is accompanied by a secondary motion directed towards the side walls 
along the outer-radius wall and towards the symmetry plane along the inner-radius 
wall and is particularly pronounced at the two furthest downstream stations. At the 
inner-radius wall, between the 30 and 90" stations a large deceleration is observed in 
the flow which corresponds to the region of adverse longitudinal pressure gradient. A 
corresponding acceleration, due to a favourable gradient, occurs at  the outer-radius 
wall and is intensified by the transfer of high-speed fluid by the secondary motion from 
the duct centre towards the outer-radius wall. 

Corresponding contours of constant longitudinal velocity, again normalized with 
the bulk velocity, are shown in figures 3(c ,  ii) and (d, ii) for the 60 and 90" positions. 
These were obtained from the measured data by least-squares polynomial regression. 
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FIGURE 2. Representative measurements of the longitudinal velocity component. 
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FIGURE 3. Measured and computed velocity (vo/x) contours in the bend flow: (a) 0" (calculated), 
(6)  30" (calculated), (c ,  i) 60" (calculated), (c,  ii) 60" (measured), ( d ,  i) 90" (calculated), ( d ,  ii) 90" 
(measured). 
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Tests verified that possible bias introduced by the regression procedure was negligible 
in comparison with the curvature existing in the measured flow profiles. 

Figures 3 (a ) ,  (b ) ,  (c,  i) and ( d ,  i) show calculated results and will be discussed later. 
The consequences of the strong secondary velocities are particularly noticeable at the 
two downstream stations, where the higher-velocity regions have been moved sub- 
stantially towards the outer-radius wall and the side walls. 

A further indication of the secondary velocities can be deduced from figure 4, 
which presents contours of the calculated radial velocity component at the 90' 
station. The maximum symmetry-plane value of the radial velocity was 0.135 and 
cori-esponds to the location identified on the figure. It should be noted that the 
seconditry flows stem from the pressure-field imbalance; the maximum radial velocity 
noted by Humphrey & Whitelaw (1976) for the corresponding turbulent flow was 
0.28% a t  z/z+ = 0 and (r - ro)/(ri - r,,) = 0.5 and stemmed from the pressure field rather 
than normal stresses. 

Values of the longitudinal velocity component were obtained in greater detail than 
that indicated by figure 2 in the vicinity of the symmetry plane of the duct and 
adjacent to the inner- and outer-radius walls. Thus the slope of the near-wall linear 
velocity gradient was deduced and allowed the calculation of the friction coefficients 
shown in figure 5 (a ) ;  calculated values of C, are also shown on this figure and calculated 
values of the corresponding overall pressure coefficient on figure 5 ( b )  and will be 
discussed later. The measurements extend from the near-linear upstream region into 
the bend, where the values on the outer-radius wall rise by a factor of more than three 
to a maximum at around the 60' station; on the inner-radius wall, C, increases over 
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FIQURES 5 (a, b ) .  For caption see facing page. 

the first 30" then falls to a minimum at around 60" before rising again to a maximum 
at the exit plane. 

A similar pattern of C, distributions might be expected at locations away from the 
symmetry plane but figure 6 (plate 1) suggests that this may be complicated by a 
region of recirculating flow which the dye traces revealed and subsequently the 
calculations confirmed. This small region of recirculation exists on the outer-radius 
wall, between 0 and 25" approximately and close to the side walls. The figure shows 
that the dye trace curves in the + z  directions and is turned against the direction 
of the bulk flow for a small but finite distance. It is likely that, in this wall region, 
the value of +Cf will become locally zero along two stagnation lines and negative in 
the intervening small area. 
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FIGURE 5. (a) Measured (circles) and computed friction coefficients at the centre-line of the 
in'side and outside curved walls of the bend. (b)  Computed pressure coefficients at the centre-line: 
-.-, computed average; --- , potential-flow solution. (c )  Computed radial variation of longi- 
tudinal pressure gradient a t  the 15 and 45" planes at the centre-line: (i) r* = ( r - r i ) / ( ro - r i ) ;  
(ii) r* = B c / ( ~ o - r i ) ;  ---,plane average. 

( r -  ri)/(ro - Ti) 

4. Equations, boundary conditions and numerical solution procedure 
The momentum equations in differential form appropriate to the present three- 

dimensional, steady, incompressible laminar flow may be written in cylindrical 
co-ordinates as 

and 

The mass conservation equation is given by 

(4) 
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Where the radius of curvature is infinite, i.e. in the upstream and downstream straight 
sections of the duct, the momentum and conservation equations reduce to the familiar 
rectangular form av, a p  a=v, 

pv*- = -- +p- axj axi ax; 
and av,.laxj = 0. (7) 

It is required to solve (1)-(3) and (5) together with the following boundary con- 
ditions: in the initial plane (all z and ra t  8 = X, = - lo), 

ve = developed duct flow, V, = V, = 0; 

on the side walls (all 8 or X,), 
Ve = V, = V, = 0 at z = &z&, r = r,, r6; 

in the symmetry plane (a11 r and 8 or X, at z = 0), 

V, = 0, ave/az = av,laz = 0; 

ave/as = a v a p  = av,/as = o 
in the exit plane (all z and r a t  8 = X ,  = & lo), 

with overall continuity imposed. 
Finite-difference equations are formulated by integration of (1)-(3) and (5) over 

volume elements or ‘cells ’ discretizing the flow domain. The main dependent variables 
are the velocity components and pressure and these are calculated on a number of 
staggered, interconnected grids, each of which is associated with a particular variable: 
the general form of the finite-difference equation is 

a R 

where $ p  is the variable (velocity component or pressure) solved for at a position 
P in the flow; the Ai coefficients are found at the six cell surfaces and represent the 
combined effects of convection and diffusion on the balance of 4, and the So term 
contains the contributions arising from pressure, centrifugal and Coriolis forces and 
other non-rectangular diffusion terms arising in cylindrical co-ordinates. A more 
detailed account of the derivation of the finite-difference equation in curvilinear 
co-ordinates is given by Humphrey (1977). 

The solution algorithm is similar to that used by Gosman & Pun (1973) and Patankar 
& Spalding (1971) and is based on the earlier work of, for example, Harlow & 
Welch (1965), Chorin (1968) and Amsden & Harlow (1970). It is different, however, in 
that it solves fully elliptic forms of the Navier-Stokes equation in three dimensions 
and can be readily adapted for arbitrary curvilinear orthogonal co-ordinates from a 
knowledge of the co-ordinate scale factors. 

The algorithm involves solving the three momentum equations and the continuity 
equation in finite-difference form by means of a cyclic series of predict and correct 
operations. In  this way, the velocities are &st calculated from the momentum 
equations for a guessed pressure field, which is calculated in turn, then the velocities 
are adjusted such that continuity is satisfied. The actual method of solution is based 
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on the standard tridiagonal matrix algorithm (TDMA) as described, for example, by 
Patankar & Spalding (1971). 

The stages in a calculation cycle are as follows: 
( 1 )  The guessed pressure field (or the field from a previous iteration) P* is substituted 

into forms of the momentum equation which are linearized, i.e. with coefficients and 
source terms evaluated from the previous cycle and held constant throughout the 
subsequent cycle. 

(2) The momentum equations are then solved to yield a field of intermediate velocity 
components vt , which do not necessarily satisfy continuity. 

(3) A pressure correction field P' is obtained by bringing the intermediate velocity 
values v: into conformity with the continuity equation and a corrected pressure field 
given by P = P* + P' is obtained. 

(4) The intermediate velocity field v* is updated by means of the P' field found in 
step 3 to obtain the more accurate velocity field v. 

( 5 )  Steps 1-4 are repeated until the convergence criterion is satisfied. 
To ensure sufficient node points to represent the strongly curved flow, the firat 

duct, the bend end the second duct were treated separately with overlapping bound- 
aries. During a calculation sequence on any one part the intermediate results for the 
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other two were stored on disc, the time required for a converged solution being 
approximately 80min of CDC 6600 CP time for a 10 x 16 x 60 grid mesh. The con- 
vergence criterion consisted of ensuring that the largest of the normalized residuals 
in any one of the four conservation equations should be less than While a fmer 
grid than the one used would have been desirable it would have resulted in prohibitive 
storage and computing time costs. 

Extensive numerical testing of the solution procedure was carried out and has 
been documented by Humphrey (1977). An example directIy relevant to the present 
flow is shown on figure 7, where the influence of the number of cross-stream node 
points is demonstrated for the symmetry-plane profile of longitudinal velocity at the 
90" station. These results were obtained with 20 grid planes in the flow direction and 
in the bend. It is clear that the 10 x 15 grid (15 lines in the radial direction where 
gradients are steeper) smooths the peaks indicated by the measurements but that the 
experimental trends are well represented. It is also clear that a considerably larger 
number of node points would be required to represent the measured trends signifi- 
cantly more closely. Comparisons, with similar discrepancies, were found at other 
locations with similarly steep gradients; in other regions of the flow and indeed 



Laminar flow in a square duct of strong curvature 52 1 

throughout the greatest part of the flow, the discrepancies were smaller and usually 
considerably smaller. 

On the basis of tests like those shown on figure 7, the calculated results presented 
here were obtained with a mesh which corresponded to 10 x 15 x 20 nodes in each of 
the three parts. The time required for a converged solution is ( I  x E x S x N ) 2  x 1 0 - 4 ~  
for E equations, 8 sweeps of the TDMA and I iterations on a grid with N nodes. 
Subsequent runs for similar geometries, using the pressure field from the present 
calculations as a first approximation, converged in a much shorter time. 

Figure 8 presents calculated profiles of the longitudinal velocity at values of 2/24 
of 0 and 0.5 and allows comparison with the measured values at each of the six measure- 
ment stations. The results, in general, confirm the comments of the previous paragraph 
in relation to the discrepancies between measurement and calculation. 

5. Discussion 
The results in figure 3, in particular, demonstrate the complexity of the present 

flow, which stems from the curvature and the associated pressure field. In  this figure 
contour plots of the measured results are given only for 60 and 90°, where sufficient 
experimental data were obtained to determine them accurately. It is clear from the 
figure that the mean flow in the entrance plane of the bend has been significantly 
influenced by the downstream flow. This elliptic influence is confirmed by the magnitude 
of the radial variation of the longitudinal pressure gradient, as shown in figure 5 ( c )  
for the 15 and 46" planes. Figure 5(c) also shows a very large and unfavourable 
longitudinal pressure gradient a t  the outer-radius wall in the 15" plane, which causes 
the flow reversal predicted and observed between 0 and 25". 

It is interesting to note that the corresponding preliminary turbulent-flow results 
of Humphrey & Whitelaw (1976) indicated an upstream influence of approximately 
similar magnitude; in contrast, the normal stresses upstream of and at the 0" plane 
were similar in magnitude to those in the 45" plane. This suggests that the transport 
of turbulence energy may be of little significance in this upstream region; the measure- 
ments downstream also suggested small turbulence transport. The apparent dominance 
of the pressure field further suggests that an effective-viscosity hypothesis (in contrast 
to a Reynolds-stress model) will be adequate for the calculation of developed duct 
flows of significant curvature. 

The calculated distributions of the friction and pressure coefficients (figure 5) 
demonstrate good agreement with the measured results and with the correlations 
presented by Ward-Smith (1971). Unlhe the pressure distributions, the two dis- 
tributions of C, do not converge quickly to the same magnitude. This is due to the 
residual secondary flows as may be confirmed from figure 9, which presents calculated 
secondary velocities at six stations. In  the 0" plane, the secondary flow is already 
established with magnitudes up to 0.15%; the calculated secondary velocities at 
-0*30X, had magnitudes up to 0.07K but the vortical pattern did not exist. The 
secondary velocities attain maximum magnitudes up to 0.30% in the 90" plane with 
a similar, but rather more confined, vortex pattern. Further downstream, the magni- 
tude of the secondary flows decays but is still apparent a t  X, = 10, showing that 
straight duct flow (without secondary motion) has not been re-established. This result 
is supported by the differences in slope of the pressure-coefficient curves in figure 
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FIGURE 10. Computed velocity distribution in the recirculating 
region of the bend flow; z / z t  = 0.94. 

5 ( b )  but does not invalidate the boundary conditions assumed for the exit plane since 
changes in the 0 = X ,  direction were indeed small. The apparent mechanism of the 
breakdown of the vortex structure is indicated by the results a t  X ,  = 2-80 and 10 
(figure 9). 

In  Ito's (1960) theoretical analysis of fully developed flow in a curved square 
duct, based upon an expansion in increasing powers of the Dean number, the secondary- 
flow streamlines had their centre at  approximately z/z+ = +_ 0.45 and 

( r  - ro)/(ri - r,) = 0.5. 

In  contrast, at  the 90" plane in the present work the secondary motion circulates about 
z/q = _+ 0.38 and ( ~ - r , ) / ( r ~ - r ~ )  N 0.70. However, Ito's analysis is valid for mildly 
curved flows while the measurements and calculations here correspond to a De of 368 
(a relatively highly curved flow). It is therefore likely that the differences are due more 
to the strong effects of the secondary motion than to not having fully developed flow 
at 90". 

The secondary flow velocities calculated in the 0" plane were probably slightly 
influenced by the downstream recirculation, whose magnitude is quantified further 
on figure 10 in the z plane where the calculations suggested it to be most extensive. 
The maximum negative velocity is less than 0.27 of the maximum positive velocity 
at the same x and z locations and the maximum radial distance over which it exists is 
less than 0.20 of the width but it extends in the longitudinal direction from upstream 
of the entrance plane to beyond the 12" location. Nevertheless, its influence is local 
and cannot be expected to have a major influence on previously presented profiles. 

The present calculations are expensive in computer time and are still imperfect. It 
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is important to ask, therefore, what reduction in precision may be associated with the 
solution of partially parabolic and ideal-fluid flow equations. Reduced forms of the 
equations of Q 4 may be obtained with the following assumptions: 

a y e 2  = 0, partially parabolic; 
a2/802 = 0 and aP180 = f (0) with f prescribed, parabolic; 

ideal, rotational; 
ideal, irrotational or potential. 

Y = 0 and finite vorticity, 
v = 0 and zero vorticity, 

The solution of the potential-flow equations is comparatively simple and very 
inexpensive. It cannot, of course, lead to values of the skin-friction drag nor predict 
secondary flows but, as shown, for example, by Huang, Robertson & McPherson 
(1967) and Ward-Smith (1971), useful calculations of the pressure coefficient can be 
obtained. A pressure distribution corresponding to the present geometry and to the 
tabulated potential-flow results of Ward-Smith is shown on figure 5 ( b )  and is in some 
agreement with the present results although the steep gradients and large maximum 
at the outer-radius wall are not represented. 

Rotational-flow equations have been shown, for example by Hawthorne (1951) and 
Squire & Winter (1951), to represent flows with curvature provided that the bend 
angle and radiua ratio are small and the aspect ratio large. The secondary flows, for 
example, have the correct trends provided that the side walls are far apart; the 
quantitative discrepancies can, however, be considerable even for the large aspect ratio 
situation. Again, the influence of skin-friction drag is not represented and the pressure 
distributions are similar to those of the irrotational flow. In  turbulent bend flow, in 
contrast, potential flow does represent the pressure distribution of bends with aspect 
ratio equal to one or larger with precision satisfactory for engineering purposes, 
provided that the radius ratio is not too severe; see Ward-Smith. 

The calculated results indicated that a t  the 45" plane the longitudinal diffusion is 
usually less than 0.05 of the total diffusion for the present flow; in addition, it is 
usually less than 0.001 of the longitudinal convection. Thus the neglect of longitudinal 
diffusion should lead to approximately correct results for substantial regions of the 
flow. The representation of the flow by parabolic equations is, however, unlikely to lead 
to reasonable results in view of the substantial radial variations in the longitudinal 
pressure gradient indicated by figure 5 ( c ) .  Partially parabolic equations are likely to 
be more successful although they cannot represent the region of the flow influenced by 
the separation of figures 6 and 10; in the 9" plane, for example, near the recirculation 
zone the ratio of longitudinal to total diffusion is 0.5 and of longitudinal diffusion to 
longitudinal convection 0.9. 

The main difficulty inherent in the use of these reduced-form equations is the need 
for a priori information that, for example, there is no region of separated flow or 
significant radial pressure distribution. There is, therefore, a need to provide solutions 
based on the equations of this paper for a range of aspect and radius ratios. A small 
sample is provided in figure 11. 

Three aspect ratios (b/a = Q, 1 and 3) and four radius ratios (RJd = 0.75, 1.5, 2.3 
and 4) are represented by the five diagrams of figure 11, which correspond to the 90" 
plane of bends with flow Reynolds numbers lower than that of the present investiga- 
tion. In general, the results show a reduction of the intensity of the secondary flow 
with a change in aspect ratio from unity and an enhancement of the secondary flow, 
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FIGURE 11.  Computed velocity (v&) contours in the 90' plane: (a) De = 86, b/a = 3, R,/d = 1.5; 
( 6 )  De = 86, b/a = 113, R,/d = 1.5; ( c )  De = 7 0 ,  b/a = 1, R,/d = 2.3; ( d )  De = 122, b/a = 1, 
R,/cE = 0.75; ( e )  De = 53, b/a = 1 ,  R,/d = 4. 
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with a displacement of the maximum velocity towards the outer-radius wall, with 
decreasing radius of curvature. Of these configurations, (a) and ( e )  indicated two 
additional counter-rotating vortices near the outer-radius wall, similar to that in 
figure 9 ( e )  and those previously calculated by Cheng et al. (1975) and Joseph et al .  
(1975) for fully developed laminar flow in a helical coil. All flows indicated significant 
radial pressure gradients but, contrary to  the Re = 790 case, recirculation in the 
longitudinal direction was not observed, probably owing to the lower Dean numbers 
and corresponding weaker secondary motion. 

The above results, together with related calculations, suggest that regions of 
recirculation exist for bend flows with De > 125. These regions occur in the initial 
25' and near the outside corners of the bends and can significantly influence the 
surrounding flow. Preliminary results suggest that much stronger curvature is required 
to induce separation in turbulent flows. Once the existence of a region of separation 
has been established, economical computation of the flow can be achieved by an 
appropriate combination of elliptic and partially parabolic equations. 
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FIGUEE 6. Visualization of tho recirculating region a t  thc outside curved wall and side walls. 
Dye irijwted a t  0" plane tlirough prcssurc tapping located in the contre of the outer-radius wall. 
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